

Kali Curtis, Drake Detar, Dominick Demas, Jackson Dedrick, Jonathan Domingo

University of Oklahoma | Price College of Business

i

TLDR;
As a part of a group project in a MIS class at OU, we developed a fully functioning database for

a theoretical tire company called Sonner Tires. Below is the ERD that we created to give you an

idea of how our physical database is structured.

Sonner Tire Group Project Team Led Zeppelin

 1

Table of Contents

Conceptual Design .. 2

Query Feasibility and Current ERD ... 3

Logical Design ... 9

Normalized Relations.. 10

Database Integrity .. 12

Physical Design and Implementation .. 13

Implemented Physical Design .. 14

Specific SQL Statements Requested.. 15

Sonner Tire Group Project Team Led Zeppelin

 2

What is an ERD? Why is it necessary?
An Entity Relationship Diagram (ERD) maps out the relationships between various entities. An

entity is a thing or process that will be used in the database. In our case, “Employee” and

“SalesOrder” are entities that will be mapped in the ERD. The ERD visually describes the

relationships between entities by including verbs and cardinalities. For example, an employee

might process a sales order. In this case, the verb “process” describes the relationship between

Employee and SalesOrder. The cardinality is a number that describes the possible outputs or

inputs for that grouping. For example, an Employee can process one to many SalesOrders, but a

SalesOrder can only be processed be one and only one employee. We would indicate this

cardinality on the ERD by using a symbol that looks like a crowsfoot on the many side, and two

vertical parallel lines on the one-and-only-one side (also known as the mandatory side). It is

important to use ERDs when creating databases so that we can plan out all of the necessary

entities and relationship that Sonner Tire uses in their business operations. After completing the

ERD, it should be an accurate representation of all the different business operations that need to

be tracked in the database.

Business Cycles Used
We used the revenue and expenditures cycles because Sonner Tire only needs to track the

revenue they receive from selling tires and minimize the cost of inventory and supplies and other

services. The business revenue cycle occurs anytime a company sells products or services.

Within the revenue cycle, the company’s revenue activities will be recorded. The expenditure

cycle occurs with the purchase of and payment for goods and services. Through the expenditure

cycle, Sonner Tires will be able to better track and purchase inventory. Sooner Tire only sells

products and services, and buys products such as the tires they work with, thus the company does

not need to track productions. Sonner Tire needs to record: sales made to customers, information

about the customer, employee, product, the vendor, payment, inventory, and goods purchased,

which is why the revenue and expenditure cycle are appropriate to use for the company’s needs.

Data Provided by Client
Based on the data provided by the client, there are three tables necessary: make, model, and tire.

The make name will be associated with the make table. For the model table, name and year will

be associated with it as attributes. Lastly, in the tire table, the attributes associated with it are

name, mileage, description, cost, and sale price. This data tells us that we will need to have

relationships between make, model, and tire in our ERD.

ERD Created
On the following page, we have provided a picture of the ERD that we created for Sonner Tire

based off of the case information given to us and the feedback from the client. Our ERD is color

coded according to the revenue cycle, expenditure cycle, and reference tables. The ERD was

created using LucidChart. Many of the entities in our diagram were taken from the generic

revenue and business cycles, but we had to make some changes based on what Sonner Tires

needed. We will go into further details about the changes we had to make in the following

section.

Query Feasibility and Current ERD
This chart contains each of the query questions requrested by Sonner Tires. We determined which tables would be needed to run the

query, and provided a projected SQL statement. Additionally, we added comments about what changes we needed to make to the

generic ERD in order to make these queries work. This process is a vital precursor to the logical design process so that we can ensure

that our database will be able to run the queries that Sonner Tire needs.

Query Question Tables needed to run the

query

Projected SQL Statement

1 Total sales (in

dollars) by region

for a given tire

manufacturer and

car manufacturer.

It would be great

if we can specify

the car model and

year too (note

that we would

like to be able to

input the month

to be calculated).

Vendor, Make, Model,

SalesOrder,

<SalesOrderLine>,

Customer

We added the entities Make,

Model, and Year. These

entities have a relationship

with vehicle.

Select OrderDate, Mod.ModelName, M.MakeName,

Year, VendorName, SUM(Quantity*Price) as

TotalSales, State

From Model Mod

Join Make M

On Mod.MakeID = M.MakeID

Join Vehicle V

On V.MakeID = M.MakeID

Join Customer C

On V.CustomerID = C.CustomerID

Join SalesOrder SO

On C.CustomerID = SO.CustomerID

Join SalesOrderLine SOL

On SO.SOID = SOL.SOLID

Join Product P

On SOL.SOLID = P.ProductID

Join Tire T

On P.ProductID = T.ProductID

Join Vendor Ven

On T.VendorID = Ven.VendorID

Where Month(OrderDate) = ‘__’, ModelName = ‘__’ ,

MakeName = ‘__’, Year = ‘__’, VendorName = ‘__’,

State = ‘__’

Sonner Tire Group Project Team Led Zeppelin

 4

Group by OrderDate, ModelName, MakeName, Year,

VendorName, State

2 Total sales (in

dollars) by a

customer in a

given year.

PaymentIn, SalesOrder,

Customer

Select CustomerID, LastName, FirstName, OrderDate,

SUM(Amount) as TotalSales

From Customer C

Join SalesOrder SO

On C.CustomerID = SO.SOID

Join PaymentIn PI

On SO.SOID = PI.PayInID

Where Year(OrderDate) = ‘__’

Group by CustomerID, LastName, FirstName,

OrderDate

3 The five highest

selling tires.

<SalesOrderLine>, Product,

Tire

We added Tire and Service

as sub-types of Product.

Select TOP 5 TireName, MAX(Quantity)

From Tire T

Join Product P

On P.ProductID = T.ProductID

Join SaleOrderLine SOL

On P.ProductID = SOL.SOLID

Group by TireName

4 Itemized invoices

for jobs for each

customer that

need to include

tires

purchased/tire

rotation/tire

repair/tire

protection.

SalesOrder,

<SalesOrderLine>,

Customer, Product

Select CustomerID, LastName, FirstName,

ProductType, P.Price, Quantity

From Customer C

Join SalesOrder SO

On C.CustomerID = SO.SOID

Join SalesOrderLine SOL

On SO.SOID = SOL.SOLID

Join Product P

On P.ProductID = SO.ProductID

Join Tire T

On T.ProductID = P.ProductID

Group By CustomerID

5 The number and

type of job

Employee Select EmpID, FirstName, LastName, ServiceTypeID

Sonner Tire Group Project Team Led Zeppelin

 5

performed by

each of our

employees.

6 Number of times

a tire protection

has been

purchased for a

particular tire and

number of times

free service has

been applied (free

tire damage

repair, free

replacement).

SalesOrder,

<SalesOrderLine>, Product

Still not sure how to use sub

type super type. Also do not

know how to group by tire

repair and replacement

Select SalesOrder

From SaleOrderLine On SOL on P.Product ID=

SOL.SOLIDID

From Product P

Join Service Serv

On P.ProductP = Serv.ProductID

7 The following

items for

Purchase Orders:

manufacturer

name, number of

POs, total cost.

PurchaseOrder,

<PurchaseOrderLine>,

Vendor, Tire

Select COUNT(POID) as NumPOS, SUM(Cost) as

TotalCost

From (Select Distinct VendorID, POID, VendorName

From PurchaseOrder PO

Join PurchaseOrderline POL

On PO.POID = POL.POID

Join Tire T

On T.ProductID = POL.ProductID

Join Vendor V

On T.VendorID = V.VendorID) SQ

8 Number of orders

and total sales per

customer in the

past 2 years. This

report is

particularly

important as it

shows the

number of

Customer, SalesOrder,

<SalesOrderLine>, Product

Select CustomerID, LastName, FirstName,

SUM(Quantity*SalePrice) as TotalSales,

COUNT(SOID) as NumOrders, OrderDate

From Customer C

Join SalesOrder SO

On C.CustomerID = SO.SalesOrderID

Join SalesOrderLine SOL

On SO.SalesOrderID = SOL.SalesOrderID

Join Product P

Sonner Tire Group Project Team Led Zeppelin

 6

returning

customers.

On SOL.ProductID = P.ProductID

Where Year(OrderDate) = GETDATE() -2

Group by CustomerID, LastName, FirstName,

OrderDate

9 List of tires that

have not been

purchased within

the last 6 months

(in order to better

manage

inventory).

Product, SalesOrderLine,

SalesOrder

Select TireName, OrderDate

From Product P

Join Tire T

On P.ProductID = T.ProductID

Left Join SalesOrderLine SOL

On P.ProductID = SOL.SOLID

Join SalesOrder SO

On SOL.SOLID = SO.SOID

Where ProductType = “Tire”

and Month(OrderDate) Between Month(GetDate())-6

And Month(GetDate())

10 Names of

customers who

took advantage of

the financing

option, date

purchased, total

amount

purchased, credit

limit, number of

payments made,

the total amount

paid, outstanding

amount, is time to

pay-off less than

6 months, all

displayed from

Finance, PaymentTerms,

Customer, SalesOrder,

PaymentIn

Select FirstName, LastName, OrderDate,

SUM(OrderTotal), CreditLimit, COUNT(PayInID),

SUM(Amount), OrderTotal – SUM(Amount) As

Outstanding_Amount

From Finance F Join Customer C On F.FinanceID =

C.FinanceID Join PaymentTerms PT On C.TermsID =

PT.TermsID Join SalesOrder SO On C.CustomerID =

SO.CustomerID Join PaymentIn P On SO.PayInID =

P.PayInID

Where C.FinanceID Not Null

Group By FirstName, LastName, OrderDate,

CreditLimit

Having Length < 6

Order By OrderDate Desc, Outstanding_Amount Desc

Sonner Tire Group Project Team Led Zeppelin

 7

the latest date and

then the largest

amount owed.

11 Total profit per

tire type and

manufacturer

type in the past 6

months.

Product, Tire,

<SalesOrderLine>,

SalesOrderLine, Make

Not sure if TotalProfit is

correct.

Select SUM((P.Price-Cost) * Quantity) as TotalProfit,

TireName, ModelName, OrderDate

From Make Mk

Join Model Md

On Mk.MakeID = Md.ModelID

Join ModelTire MT

On Md.ModelID = MT.ModelTireID

Join Product P

On MT.ModelTireID = P.ProductID

Join SalesOrderLine SOL

On P.ProductID = SOL.SOLID

Join SalesOrder SO

ON SOL.SOLID = SO.SOID

Where Month(OrderDate) = GETDATE() – 6

Group by TireName, ModelName, OrderDate

12 List of all

customers that

have not made a

purchase within

the last 12

months from the

current date.

Customer, SalesOrder

Select CustomerID, LastName, FirstName,OrderDate

From Customer C

Left Join SalesOrder SO

On C.CustomerID = SO.SOID

Where Month(OrderDate) between Month(GetDate())-

12 And Month(GetDate())

13 List of customers

whose average

sales is less than

the average of all

sales. This will

help us to find

Customer, SalesOrder Select Customer, AVERAGE(COST) as Average Cost,

Average(OrderTotal) as Total Average Sales

Join Customer C On SalesOrder SOI

C.Customer = C.SalesOrder

Where Average Cost < Total Average Sales

Order By (MAX) Average Cost ascen

Sonner Tire Group Project Team Led Zeppelin

 8

customers whom

we should target

to get a higher

volume of sales.

9

Logical Design
The logical design phase occurs after the conceptual design phase. In this phase, the ERD has

already been created, so now it is important to ensure that the database is designed correctly so

that it can run without issues. In the logical design phase, entities are converted into relations.

Before we can begin writing out the relations, we undergo the process of normalization.

Normalization is a crucial part of the logical design process. Then, there are several rules and

constraints that need to be followed when converting the entities into relations, which we will

discuss further in detail.

Normalization
The process of normalization is intended to make the database reliable and efficient. To

normalize the data structure, we must ensure that each column is “atomic” meaning it cannot be

broken down any further. For example, it is best practice not to have any multi-valued attributes

like “name” in the database. We must break it down into its base components of first name and

last name. Second, the columns must not contain redundant data, which increases the time it

takes to run queries. By doing these two things we can ensure our database will have data

integrity and run efficiently. Lastly, we must remove dependencies. To do this, we make sure

there are not any dependency constraints. Constraints will be described further in the data

integrity section.

Normalization of the Data Provided by the Client
To normalize the data that was provided by the client, we first had to ensure that each column

was broken down into its most basic form and did not have multiple values. Then, we ensured

that there were no partial or functional dependencies in the tables. To accomplish this, every

column needed to be predicted by the key element within the table and that key element only.

Sonner Tire Group Project Team Led Zeppelin

 10

Normalized Relations

Revenue Cycle

TCustomer(CustomerID, CustFirstName, CustLastName, CustStreetAddress, CustZipcode,

CustCity, CustState, CustEmail)

TEmployee(EmpID, EmpFirstName, EmpLastName)

TDiscount(DiscountID, DDiscountType)

TSalesOrder(SOID, SOPayInID, SOCustomerID, SOEmpID-Sales, SOEmpID-Service,

SODiscountID, SOVehicleID, SOTechFirstName, SOTechLastName, SOOrderDate,

SOMileage, SODropOffTime, SOPickUpTime, SOTimeStartService, SOTimeEndService,

SOIsFinancing)

Foreign Key SOPayInID references TPaymentIn

Null Allowed

On delete set null

Foreign Key SOCustomerID references TCustomer

Not Null

On delete restrict

Foreign Key SOEmpID-Sales references TEmployee

Not Null

On delete restrict

Foreign Key SOEmpID-Service references TEmployee

Null allowed

On delete set null

Foreign Key SODiscountID references TDiscount

Null Allowed

On delete set null

Foreign Key SOVehicleID references TVehicle

Not Null

On delete restrict

TSalesOrderLine(SOLID, SOLSOID, SOProductID, SOLStatus, SOLSaleOrReturn,

SOLQuantity, SOLPrice)

Foreign Key SOLSOID references TSalesOrder

Not Null

On delete restrict

Foreign Key SOProductID references TProduct

Not Null

On delete restrict

TPaymentType(PaymentTypeID, PTDescription)

Sonner Tire Group Project Team Led Zeppelin

 11

TPaymentIn(PayInID, PayEmpID, PayPaymentType, PayDate, PayAmount, PayCardNumber,

PayExpirationDate, PaySecurityCode)

Foreign Key PayPaymentType references TPaymentType

Null allowed

On delete set null

Foreign Key PayEmpID references TEmployee

Not Null

On delete Restrict

Expenditure Cycle

TVendor(VendorID, VVendorName, VSalesRepFirstName, VSalesRepLastName)

TPurchaseOrder(POID, POEmpID, PODatePaid, POAmountPaid)

Foreign Key POEmpID references TEmployee

Not Null

On Delete Restrict

TPurchaseOrderLine(POLID, POLPOID, POLProductID, POLQuantity, POLPrice)

Foreign Key POLPOID references TPurchaseOrder

Not Null

On Delete Restrict

Foreign Key POLProductID references TTire

Not Null

On Delete Restrict

TMake(MakeID, MMakeName)

TModel(ModelID, MOMakeID, MOModelName, MOYear)

Foreign Key MOMakeID references TMake

Not null

On delete Restrict

TVehicle(VehicleID, VEHCustomerID, VEHMakeID, VINNumber)

Foreign Key VEHCustomerID references TCustomer

Not null

On Delete Restrict

Foreign Key VEHMakeID references TMake

Not null

On delete restrict

TProduct(ProductID, PProductType, PSalePrice)

TService(ServProductID, ServLifeTimeProtection)

Sonner Tire Group Project Team Led Zeppelin

 12

TTire(TireProductID, TireVendorID, TireName, TireDescription, TireMileage, TireCost,

TireQty_OH, TireQTY_Committed, TireReorderPoint)

Foreign Key TIVendorID references TVendor

Not Null

On Delete Restrict

TTireModel(TireModelID, TMModelID, TMProductID)

 Foreign Key TMModelID references TModel

Not Null

On Delete Restrict

Foreign Key TMProductID references Ttire

Not Null

On Delete Restrict

Differences between ERD and Normalized Relations
One difference between ERDs and normalized relations are that ERDs can have multi-valued

attributes, while normalized relations should be broken down into smaller attributes in order to

make the entity atomic. Atomicity is important so that reports made within the database are

efficient and accurate. Similarly, normalized relations do not include derived attributes. This is

important because derived attributes are calculated from other attributes, so they do not need to

be included in normalized relations. Furthermore, the names of the entities in normalized

relations are different from the names of the entities in the ERD. In normalized relations, we add

a T to the beginning of the name of the entity to indicate that it is a table. Additionally, the

attributes in normalized relations have unique names. This is beneficial because it will prevent us

from getting unambiguous column names in our queries.

Database Integrity
Data integrity means that the reports generated from the database are trustworthy. Normalization

is one way to ensure that data integrity is accomplished. There are three integrity constraints:

entity, referential, and domain. The entity integrity constraint is that every entity must have a

primary key that isn’t null and doesn’t change over time. The referential integrity applies to the

relationships between entities. It states that for each relationship, the foreign key in one entity

must match the primary key in the other entity, or null if applicable. The last is the domain

integrity constraint. This constraint says that every value in a column must be of the same data

type, like integer or string. We ensured that these constraints were enforced by having a related

primary key, none of which that are null, and foreign key for each of the relationships in our

diagram. We enforced the referential constraint by not allowing any multi-value attributes.

Sonner Tire Group Project Team Led Zeppelin

 13

Physical Design and Implementation
The Physical Design phase is the part of the database building process where we choose which

relational database management system (RDBMS) we will we be using. This is important

because different RDBMS have different data types that they use to store information. We will

be using Microsoft SQL Server as our RDBMS. The next step is the actual implementation of

data into the database which we did using dummy data. The purpose of this was to make sure

everything in the database was working without any errors. Without this phase of the database

design process, we wouldn’t be able to create a database. Rather, we would just have the

conceptual design all planned out on paper.

Data Dictionary
A data dictionary is a collection of information describing the data included in a database and the

relationships between the information. It is used as a way to better understand the structure and

information within a database. It includes things like entity names, attributes, and their data

types. As an example, the data dictionary for our project includes things like the Customer table

and its attributes being things like their first name, last name, and the customer type. The data

types, whether or not it is allowed to be null, what table it references if it is a foreign key, and a

sample of the key will be included on the same row as the attribute.

Denormalization
Denormalization is the process of removing of some of the normalized relations of the data in

order to improve performance. When denormalizing the data, it will make it more efficient to run

SQL queries that include a long list of join statements. While we recognize that denormalization

results in data duplication and redundancy, we made the choice to denormalize some of our data.

First, we decided to remove the year table and list the year in the model table instead. We also

decided to list the customer’s state and zip code as attributes in the customer table, rather than

having separate tables for them. We decided to do this with the vendor’s address as well. These

changes make it easier for us and the client to write queries and will allow the queries to run

quicker.

Sonner Tire Group Project Team Led Zeppelin

 14

Implemented Physical Design

Strengths and Weaknesses Encountered During Implementation
One of our strengths was that our ERD was close to finalized before going into the

implementation phase, which made it easier for us to create tables in the database. Creating the

tables in the database was also one of our strengths because we simply had to create the tables in

the order that we wrote our normalized relations. However, one of our weaknesses when creating

the tables in the database was that the attributes of the tables were named inconsistently since we

were working on them separately. The inconsistency of the attribute names made it more

difficult for us to write the SQL queries and implement them into our database. To fix this issue,

we would need to delete the tables and create them again with the appropriately named attributes.

Given the time constraints, we decided to leave the tables the way they are.

Specific SQL Statements Requested
Here we will list the specific programs we were asked to execute by the client in the database, as well as additional queries we believe

would be useful for the operation. We have included the request asked of us, the SQL code needed to implement the program, and an

image of the result of the program. Some of the ouputs are empty because none of the sample data applied to the requested query.

When more data is added to the database, it will show more results.

Query

Question SQL Partial Output

1 Total sales (in

dollars) for a

given tire

manufacturer

and car

manufacturer.

It would be

great if we

can specify

the car model

and year too

(note that we

would like to

be able to

input the

month to be

calculated).

SELECT MakeID, ModelID,

MOModelName, MOYear,

VendorName,

Sum(Quantity*SalePrice)

TotalSales

FROM View1 JOIN View2

 ON

View1.ProductID=View2.ProductID

WHERE month(date)=[Parameter]

View1

SELECT MakeID, ModelID,

ModelName, Year, VendorName

FROM TMake

JOIN TModel

ON MakeID = ModelMakeID

JOIN TTireModel

ON ModelID = TMModelID

JOIN TTire

ON TMProductID = TireProductID

Join TVendor

ON VendorID = TireVendorID

View2

Sonner Tire Group Project Team Led Zeppelin

 16

SELECT VehicleID, SOID, SOLID,

ProductID

FROM TVehicle

JOIN TSalesOrder

ON VehicleID = SOVehicleID

JOIN TSalesOrderLine SOL

ON SOID = SOLID

JOIN TProduct

ON SOLProductID = ProductID

WHERE ProductType='Tire'

2 Total sales (in

dollars) by a

customer in a

given year.

SELECT CusFirstName,

CusLastName, Sum(PIAmount)

TotalSales

FROM TCustomer

JOIN TSalesOrder

ON CustomerID = SOCustomerID

JOIN TPaymentIn

ON SOID = PISOID

GROUP BY CusFirstName,

CusLastName

3 The five

highest

selling tires.

SELECT TOP 5 TireProductID,

ProductName, Count(SOLID)

TimesSold

FROM TSalesOrderLine

JOIN TProduct

ON SOLProductID = ProductID

JOIN TTire

ON TireProductID = ProductID

GROUP BY TireProductID,

ProductName

ORDER BY TimesSold DESC

Sonner Tire Group Project Team Led Zeppelin

 17

4

itemized

invoices for

jobs for each

customer that

need to

include tires

purchased/tire

rotation/tire

repair/tire

protection

SELECT CustomerID, SOID,

VehicleID, SOOrderDate,

SOLQuantity, ProductID,

CusFirstName, CusLastName,

SalePrice, (SOLQuantity*SalePrice)

LineTotal

FROM TCustomer JOIN TVehicle

on CustomerID=VEHCustomerID

join TSalesOrder on

VehicleID=SOVehicleID join

TSalesOrderLine on SOID =

SOLSOID join TProduct on

SOLProductID = ProductID

WHERE CustID=[] AND CarID=[]

AND Date=[]

(with the WHERE clause commented out)

5 The number

and type of

job performed

by each of

our

employees.

SELECT EmpID, EmpFirstName,

EmpLastName,

Count(SOEmpIDSales) Sales,

Count(SOEmpIDService) Service

FROM TEmployee Join

TSalesOrder On EmpID =

SOEmpIDService

GROUP BY EmpID,

EmpFirstName, EmpLastName

6 Number of

times tire

protection has

been

purchased for

a particular

tire

SELECT TireProductID, TireName,

Count(TireProductID)

NumPurchases

FROM TSalesOrderLine JOIN

TProduct On SOLProductID =

ProductID Join TTire On ProductID

= TireProductID Join TService On

ProductID = ServProductID

Sonner Tire Group Project Team Led Zeppelin

 18

WHERE ProductType='Serv' And

ServDescription = 'tire protection'

GROUP BY TireProductID,

TireName

7

The following

items for

Purchase

Orders:

manufacturer

name,

number of

POs, total

cost.

SELECT VendorID, VendorName,

Count(POID) NumPurchases,

Sum(POLQuantity*POLPrice) Total

FROM TPurchaseOrder Join

TPurchaseOrderLine On POID =

POLPOID Join TTire On

POLProductID = TireProductID

Join TVendor On TireVendorID =

VendorID

GROUP BY VendorID,

VendorName

8 Number of

orders and

total sales per

customer in

the past 2

years. This

report is

particularly

important as

it shows the

number of

returning

customers.

SELECT CustomerID,

CusFirstName, CusLastName,

Count(SOID)

FROM TCustomer Join

TSalesOrder On CustomerID =

SOCustomerID

WHERE SOOrderDate >= 2 years

GROUP BY CustomerID,

CusFirstName, CusLastName

Sonner Tire Group Project Team Led Zeppelin

 19

9 List of tires

that have not

been

purchased

within the last

6 months (in

order to better

manage

inventory).

SELECT ProductID, ProductName

FROM TSalesOrderLine

LEFT JOIN TProduct WHERE

SOLProductID IS Null AND

ProductType = ‘Tire’

10 Names of

customers

who took

advantage of

the financing

option, date

purchased,

total amount

purchased,

credit limit,

the number of

payments

made, the

total amount

paid,

outstanding

amount, is

time to pay-

off less than 6

months, all

displayed

from the

latest date

and then the

Payment type – cash, credit, check

SELECT CusFirstName,

CusLastName, Total, Paid, (Total -

Paid) Remaining

FROM TCustomer Join

TSalesOrder On CustomerID =

SOCustomerID Join SQ1 On

SOCustomerID = SQ1.CustomerID

JOIN SQ2 ON

SQ1.SOID=SQ2.SOID

WHERE IsFinancing = ‘Y’ AND

Month(SOOrderDate) =

Month(GETDATE()) – 6

SQ1

SELECT CustomerID, SOID,

Sum(SOLQuantity*SOLPrice) Total

FROM TVehicle Join TSalesOrder

On VehicleID = SOVehicleID Join

TSalesOrderLine On SOID =

SOLSOID

GROUP BY CustomerID, SOID

SQ2

Sonner Tire Group Project Team Led Zeppelin

 20

largest

amount owed.

SELECT CustomerID,

CusFirstName, CusLastName,

Sum(PIAmount) Paid

FROM TCustomer Join TVehicle

On CustomerID = VEHCustomerID

Join TSalesOrder On SOVehicleID

= VehicleID Join TPaymentIn On

SOID = PISOID

GROUP BY CustomerID,

CusFirstName, CusLastName

11 Total profit

per tire type

and

manufacturer

type in the

past 6

months.

SELECT ProductID, ProductName,

SUM((SOLPrice-

POLCost)*Quantity) Profit

FROM TSalesOrder join

TSalesOrderLine on

SOID=SOLSOID join TProduct P

on SOLProductID=ProductID join

TTire on ProductID=TireProductID

WHERE Month(SOOrderDate) =

Month(GETDATE()) – 6

GROUP BY ProductID,

ProductName

12 List of all

customers

that have not

made a

purchase

within the last

12 months

from the

current date.

SELECT CustomerID,

CusFirstName, CusLastName

FROM TCustomer C JOIN

TVehicle V on

C.CustomerID=V.VEHCustomerID

Left Join TSalesOrder on

VehicleID= SOVehicleID

WHERE SOID IS Null AND

Month(SOOrderDate) =

Month(GETDATE()) – 12

Sonner Tire Group Project Team Led Zeppelin

 21

13 List of

customers

whose

average sales

is less than

the average of

all sales. This

will help us to

find

customers

whom we

should target

to get a

higher

volume of

sales.

SELECT CusFirstName,

CusLastName,

AVG(SOLQuantity*SOLPrice)

AVGPurchase

FROM TCustomer Join

TSalesOrder On CustomerID =

SOCustomerID Join

TSalesOrderLine On SOID =

SOLSOID

WHERE

AVG(SOLQuantity*SOLPrice) <

(SELECT

AVG(SOLQuantity*SOLPrice)

From TSalesOrderLine)

