Kali Curtis, Drake Detar, Dominick Demas, Jackson Dedrick, Jonathan Domingo
University of Oklahoma | Price College of Business

TLDR;

As a part of a group project in a MIS class at OU, we developed a fully functioning database for
a theoretical tire company called Sonner Tires. Below is the ERD that we created to give you an
idea of how our physical database is structured.

Paymen(Type)
pald with___} Paymertin
PK |PaymentTypeiD Kev:
K |PaynD o'
Description a le O roen- Revenue Cycle
g Red- Expenditure Cycle
S0 Blue- Reference Tables
Date
Armount
Customer X |PaymentType
-
L3
CusFrstName]
CusL asthame ——
Zpcode
ony —(O=] Px [soo
Sate EN || Soop, ”j
& ——] K [EmpO-Sales E(O—senvic
’ FX |EmpD-Service
Crech FX | VetuclelD
s Misaze >
A |oroponTIme j_Oé
Vehicle PrkUpTime
PK [VehiclelD TImeSartSencs
FK |CustomeriD m::)
FK [MakelD = o o
VINNumber "4
Ndoage
p-\inu
£ Q
Make —
Discount
PK :nhel:m PK
ake
— DiscountType
T DiscoutAmt
s PK |ProductiD
x ProductType
Model ProducNare
PK |ModellD SalePrce
deiName |13 ProductType=
FX | MakeD — p——
Year “Tire"
A “Senv”
<TireModel> Tire
PK |TreModeliD 1] FK [VendoriD Service
FK |ModeliD TreName [oncnpnon
FK |ProductiD Description -
Micage
Cost E— Vendor
Qey_om PR 1D
L1 —
RepFirstName
StreetAddrors
State

Sonner Tire Group Project Team Led Zeppelin

Table of Contents
CONCEPTUAL DESIGN ... bbb bbb bbb b ene s 2
Query Feasibility and CUrrENT ERDcccocoviiiiice ettt 3
[T [Tor= L B T=T] o o SRS SRSSPSN 9
NOFrMAliZEA REIALIONS.ooiiiiiie et e e e sb e e s be e s treete e anee e 10
DYzl ok Rl F] (=0T OSSR 12
Physical Design and IMplementation ..o 13
Implemented PRYSICAl DESIGNcc.oiviii ittt re et e e sre b e be et e sresraenrenre s 14
Specific SQL Statements REQUESTEM.ccoiiiiiiiiiiieeee e 15

Sonner Tire Group Project Team Led Zeppelin

What is an ERD? Why is it necessary?

An Entity Relationship Diagram (ERD) maps out the relationships between various entities. An
entity is a thing or process that will be used in the database. In our case, “Employee” and
“SalesOrder” are entities that will be mapped in the ERD. The ERD visually describes the
relationships between entities by including verbs and cardinalities. For example, an employee
might process a sales order. In this case, the verb “process” describes the relationship between
Employee and SalesOrder. The cardinality is a number that describes the possible outputs or
inputs for that grouping. For example, an Employee can process one to many SalesOrders, but a
SalesOrder can only be processed be one and only one employee. We would indicate this
cardinality on the ERD by using a symbol that looks like a crowsfoot on the many side, and two
vertical parallel lines on the one-and-only-one side (also known as the mandatory side). It is
important to use ERDs when creating databases so that we can plan out all of the necessary
entities and relationship that Sonner Tire uses in their business operations. After completing the
ERD, it should be an accurate representation of all the different business operations that need to
be tracked in the database.

Business Cycles Used

We used the revenue and expenditures cycles because Sonner Tire only needs to track the
revenue they receive from selling tires and minimize the cost of inventory and supplies and other
services. The business revenue cycle occurs anytime a company sells products or services.
Within the revenue cycle, the company’s revenue activities will be recorded. The expenditure
cycle occurs with the purchase of and payment for goods and services. Through the expenditure
cycle, Sonner Tires will be able to better track and purchase inventory. Sooner Tire only sells
products and services, and buys products such as the tires they work with, thus the company does
not need to track productions. Sonner Tire needs to record: sales made to customers, information
about the customer, employee, product, the vendor, payment, inventory, and goods purchased,
which is why the revenue and expenditure cycle are appropriate to use for the company’s needs.

Data Provided by Client

Based on the data provided by the client, there are three tables necessary: make, model, and tire.
The make name will be associated with the make table. For the model table, name and year will
be associated with it as attributes. Lastly, in the tire table, the attributes associated with it are
name, mileage, description, cost, and sale price. This data tells us that we will need to have
relationships between make, model, and tire in our ERD.

ERD Created

On the following page, we have provided a picture of the ERD that we created for Sonner Tire
based off of the case information given to us and the feedback from the client. Our ERD is color
coded according to the revenue cycle, expenditure cycle, and reference tables. The ERD was
created using LucidChart. Many of the entities in our diagram were taken from the generic
revenue and business cycles, but we had to make some changes based on what Sonner Tires
needed. We will go into further details about the changes we had to make in the following
section.

Query Feasibility and Current ERD

This chart contains each of the query questions requrested by Sonner Tires. We determined which tables would be needed to run the

query, and provided a projected SQL statement. Additionally, we added comments about what changes we needed to make to the

generic ERD in order to make these queries work. This process is a vital precursor to the logical design process so that we can ensure

that our database will be able to run the queries that Sonner Tire needs.

car manufacturer.
It would be great
if we can specify
the car model and
year too (note
that we would
like to be able to
input the month
to be calculated).

We added the entities Make,
Model, and Year. These
entities have a relationship
with vehicle.

Join Make M

On Mod.MakelD = M.MakelD
Join Vehicle V

On V.MakelD = M.MakelD

Join Customer C

On V.CustomerID = C.CustomerID
Join SalesOrder SO

On C.CustomerID = SO.CustomerID
Join SalesOrderLine SOL

On SO.SOID = SOL.SOLID

Join Product P

On SOL.SOLID = P.ProductID
JoinTire T

On P.ProductID = T.ProductID
Join Vendor Ven

On T.VendorID = Ven.VendorID

Where Month(OrderDate) = “__’, ModelName =’
MakeName="° ’, Year=°_’ VendorName="°‘ _

State=° °

Query Question Tables needed to run the Projected SQL Statement
query
1 Total sales (in Vendor, Make, Model, Select OrderDate, Mod.ModelName, M.MakeName,
dollars) by region | SalesOrder, Year, VendorName, SUM(Quantity*Price) as
for a given tire <SalesOrderLine>, TotalSales, State
manufacturer and | Customer From Model Mod

2
1

Sonner Tire Group Project

Team Led Zeppelin

Group by OrderDate, ModelName, MakeName, Year,
VendorName, State

2 Total sales (in Paymentin, SalesOrder, Select CustomerlD, LastName, FirstName, OrderDate,
dollars) by a Customer SUM(Amount) as TotalSales
customer in a From Customer C
given year. Join SalesOrder SO
On C.CustomerID = SO.SOID
Join Paymentin Pl
On SO.SOID = Pl.PayInID
Where Year(OrderDate) = °
Group by CustomerlD, LastName, FirstName,
OrderDate
3 The five highest | <SalesOrderLine>, Product, | Select TOP 5 TireName, MAX(Quantity)
selling tires. Tire From Tire T
Join Product P
We added Tire and Service | On P.ProductlD = T.ProductID
as sub-types of Product. Join SaleOrderLine SOL
On P.ProductID = SOL.SOLID
Group by TireName
4 Itemized invoices | SalesOrder, Select CustomerlID, LastName, FirstName,
for jobs for each | <SalesOrderLine>, ProductType, P.Price, Quantity
customer that Customer, Product From Customer C
need to include Join SalesOrder SO
tires On C.CustomerID = SO.SOID
purchased/tire Join SalesOrderLine SOL
rotation/tire On SO.SOID = SOL.SOLID
repair/tire Join Product P
protection. On P.ProductID = SO.ProductID
JoinTire T
On T.ProductID = P.ProductIiD
Group By CustomerID
5 The number and | Employee Select EmplID, FirstName, LastName, ServiceTypelD

type of job

Sonner Tire Group Project

Team Led Zeppelin

and total sales per
customer in the
past 2 years. This
report is
particularly
important as it
shows the
number of

<SalesOrderLine>, Product

performed by
each of our
employees.
6 Number of times | SalesOrder, Select SalesOrder
a tire protection <SalesOrderLine>, Product | From SaleOrderLine On SOL on P.Product ID=
has been SOL.SOLIDID
purchased for a Still not sure how to use sub | From Product P
particular tire and | type super type. Also do not | Join Service Serv
number of times | know how to group by tire On P.ProductP = Serv.ProductID
free service has repair and replacement
been applied (free
tire damage
repair, free
replacement).
7 The following PurchaseOrder, Select COUNT(POID) as NumPOS, SUM(Cost) as
items for <PurchaseOrderLine>, TotalCost
Purchase Orders: | Vendor, Tire From (Select Distinct VendorID, POID, VendorName
manufacturer From PurchaseOrder PO
name, number of Join PurchaseOrderline POL
POs, total cost. On PO.POID = POL.POID
JoinTire T
On T.ProductID = POL.ProductiD
Join Vendor V
On T.VendorID =V.VendorID) SQ
8 Number of orders | Customer, SalesOrder, Select CustomerlD, LastName, FirstName,

SUM(Quantity*SalePrice) as TotalSales,
COUNT(SOID) as NumOrders, OrderDate
From Customer C

Join SalesOrder SO

On C.CustomerID = SO.SalesOrderID
Join SalesOrderLine SOL

On SO.SalesOrderID = SOL.SalesOrderID
Join Product P

Sonner Tire Group Project

Team Led Zeppelin

returning
customers.

On SOL.ProductID = P.ProductID

Where Year(OrderDate) = GETDATE() -2
Group by CustomerID, LastName, FirstName,
OrderDate

9 List of tires that | Product, SalesOrderLine, Select TireName, OrderDate
have not been SalesOrder From Product P
purchased within JoinTire T
the last 6 months On P.ProductID = T.ProductID
(in order to better Left Join SalesOrderLine SOL
manage On P.ProductID = SOL.SOLID
inventory). Join SalesOrder SO
On SOL.SOLID = S0.S0OID
Where ProductType = “Tire”
and Month(OrderDate) Between Month(GetDate())-6
And Month(GetDate())
10 Names of Finance, PaymentTerms, Select FirstName, LastName, OrderDate,

customers who
took advantage of
the financing
option, date
purchased, total
amount
purchased, credit
limit, number of
payments made,
the total amount
paid, outstanding
amount, is time to
pay-off less than
6 months, all
displayed from

Customer, SalesOrder,
Paymentin

SUM(OrderTotal), CreditLimit, COUNT(PayInID),
SUM(Amount), OrderTotal - SUM(Amount) As
Outstanding_Amount

From Finance F Join Customer C On F.FinancelD =
C.FinancelD Join PaymentTerms PT On C.TermsID =
PT.TermslID Join SalesOrder SO On C.CustomerID =
SO.CustomerID Join Paymentin P On SO.PayInID =
P.PayInID

Where C.FinancelD Not Null

Group By FirstName, LastName, OrderDate,
CreditLimit

Having Length < 6

Order By OrderDate Desc, Outstanding_Amount Desc

Sonner Tire Group Project

Team Led Zeppelin

the latest date and
then the largest
amount owed.

whose average
sales is less than
the average of all
sales. This will
help us to find

11 Total profit per Product, Tire, Select SUM((P.Price-Cost) * Quantity) as TotalProfit,
tire type and <SalesOrderLine>, TireName, ModelName, OrderDate
manufacturer SalesOrderLine, Make From Make Mk
type in the past 6 Join Model Md
months. Not sure if TotalProfit is On Mk.MakelD = Md.ModelID
correct. Join ModelTire MT
On Md.ModelID = MT.ModelTirelD
Join Product P
On MT.ModelTirelD = P.ProductID
Join SalesOrderLine SOL
On P.ProductID = SOL.SOLID
Join SalesOrder SO
ON SOL.SOLID =S0.S0ID
Where Month(OrderDate) = GETDATE() - 6
Group by TireName, ModelName, OrderDate
12 List of all Customer, SalesOrder Select CustomerID, LastName, FirstName,OrderDate
customers that From Customer C
have not made a Left Join SalesOrder SO
purchase within On C.CustomerID = SO.SOID
the last 12 Where Month(OrderDate) between Month(GetDate())-
months from the 12 And Month(GetDate())
current date.
13 List of customers | Customer, SalesOrder Select Customer, AVERAGE(COST) as Average Cost,

Average(OrderTotal) as Total Average Sales
Join Customer C On SalesOrder SOI
C.Customer = C.SalesOrder

Where Average Cost < Total Average Sales
Order By (MAX) Average Cost ascen

Sonner Tire Group Project

Team Led Zeppelin

customers whom
we should target
to get a higher

volume of sales.

Logical Design

The logical design phase occurs after the conceptual design phase. In this phase, the ERD has
already been created, so now it is important to ensure that the database is designed correctly so
that it can run without issues. In the logical design phase, entities are converted into relations.
Before we can begin writing out the relations, we undergo the process of normalization.
Normalization is a crucial part of the logical design process. Then, there are several rules and
constraints that need to be followed when converting the entities into relations, which we will
discuss further in detail.

Normalization

The process of normalization is intended to make the database reliable and efficient. To
normalize the data structure, we must ensure that each column is “atomic” meaning it cannot be
broken down any further. For example, it is best practice not to have any multi-valued attributes
like “name” in the database. We must break it down into its base components of first name and
last name. Second, the columns must not contain redundant data, which increases the time it
takes to run queries. By doing these two things we can ensure our database will have data
integrity and run efficiently. Lastly, we must remove dependencies. To do this, we make sure
there are not any dependency constraints. Constraints will be described further in the data
integrity section.

Normalization of the Data Provided by the Client

To normalize the data that was provided by the client, we first had to ensure that each column
was broken down into its most basic form and did not have multiple values. Then, we ensured
that there were no partial or functional dependencies in the tables. To accomplish this, every
column needed to be predicted by the key element within the table and that key element only.

TMake(MakeII?i_ MMakeName)

TCarModel(ModellD, CMMakelD, CMModelName, CMY ear)
Foreign Ke}z CMMakelD references TMake
Not Null .
On delete Re§‘§'\-{ct
TModelTire(MTID, ModModelID, ModProductID-Tire)
Foreign Key ModModellD references TCarModel
Not Null
On delete restrict .
TCar(CarID, CCarManufacturer, CModelID, CModel, CYear, CTire)
Foreign Key CModellD references TCarModel
Not Null
On delete Restrict
TTires(TirelD, TireName, TireManufacturer, TireGoodFor, TireMileage, TireDescription,
TireCost, TireSalesPrice, TireQTY OH, TireQTY Committed, TireReorderPoint)

Sonner Tire Group Project Team Led Zeppelin

Normalized Relations
Revenue Cycle

TCustomer(CustomerID, CustFirstName, CustLastName, CustStreetAddress, CustZipcode,
CustCity, CustState, CustEmail)

TEmployee(EmpID, EmpFirstName, EmpLastName)

TDiscount(DiscountlD, DDiscountType)

SOMiileage, SODropOffTime, SOPickUpTime, SOTimeStartService, SOTimeEndService,
SOlsFinancing)
Foreign Key SOPayInID references TPaymentin
Null Allowed
On delete set null
Foreign Key SOCustomerID references TCustomer
Not Null
On delete restrict
Foreign Key SOEmpID-Sales references TEmployee
Not Null
On delete restrict
Foreign Key SOEmpID-Service references TEmployee
Null allowed
On delete set null
Foreign Key SODiscountID references TDiscount
Null Allowed
On delete set null
Foreign Key SOVehiclelD references TVehicle
Not Null
On delete restrict

SOLQuantity, SOLPrice)
Foreign Key SOLSOID references TSalesOrder
Not Null
On delete restrict
Foreign Key SOProductID references TProduct
Not Null
On delete restrict

TPaymentType(PaymentTypelD, PTDescription)

10

Sonner Tire Group Project Team Led Zeppelin

PayExpirationDate, PaySecurityCode)
Foreign Key PayPaymentType references TPaymentType
Null allowed
On delete set null
Foreign Key PayEmplID references TEmployee
Not Null
On delete Restrict

Expenditure Cycle

TVendor(VendorID, VVendorName, VSalesRepFirstName, VSalesRepLastName)

Foreign Key POEmpID references TEmployee
Not Null
On Delete Restrict

Foreign Key POLPOID references TPurchaseOrder
Not Null

On Delete Restrict

Foreign Key POLProductID references TTire

Not Null

On Delete Restrict

TMake(MakelD, MMakeName)

Foreign Key MOMakelD references TMake
Not null
On delete Restrict

Foreign Key VEHCustomerID references TCustomer
Not null

On Delete Restrict

Foreign Key VEHMakelD references TMake

Not null

On delete restrict

TProduct(ProductID, PProductType, PSalePrice)

TService(ServProductID, ServLifeTimeProtection)

11

Sonner Tire Group Project Team Led Zeppelin

TTire(TireProductID, TireVendorlD, TireName, TireDescription, TireMileage, TireCost,
TireQty_OH, TireQTY_Committed, TireReorderPoint)

Foreign Key TIVendorID references TVendor

Not Null

On Delete Restrict

Foreign Key TMModellD references TModel
Not Null

On Delete Restrict

Foreign Key TMProductID references Ttire
Not Null

On Delete Restrict

Differences between ERD and Normalized Relations

One difference between ERDs and normalized relations are that ERDs can have multi-valued
attributes, while normalized relations should be broken down into smaller attributes in order to
make the entity atomic. Atomicity is important so that reports made within the database are
efficient and accurate. Similarly, normalized relations do not include derived attributes. This is
important because derived attributes are calculated from other attributes, so they do not need to
be included in normalized relations. Furthermore, the names of the entities in normalized
relations are different from the names of the entities in the ERD. In normalized relations, we add
a T to the beginning of the name of the entity to indicate that it is a table. Additionally, the
attributes in normalized relations have unique names. This is beneficial because it will prevent us
from getting unambiguous column names in our queries.

Database Integrity

Data integrity means that the reports generated from the database are trustworthy. Normalization
is one way to ensure that data integrity is accomplished. There are three integrity constraints:
entity, referential, and domain. The entity integrity constraint is that every entity must have a
primary key that isn’t null and doesn’t change over time. The referential integrity applies to the
relationships between entities. It states that for each relationship, the foreign key in one entity
must match the primary key in the other entity, or null if applicable. The last is the domain
integrity constraint. This constraint says that every value in a column must be of the same data
type, like integer or string. We ensured that these constraints were enforced by having a related
primary key, none of which that are null, and foreign key for each of the relationships in our
diagram. We enforced the referential constraint by not allowing any multi-value attributes.

12

Sonner Tire Group Project Team Led Zeppelin

Physical Design and Implementation

The Physical Design phase is the part of the database building process where we choose which
relational database management system (RDBMS) we will we be using. This is important
because different RDBMS have different data types that they use to store information. We will
be using Microsoft SQL Server as our RDBMS. The next step is the actual implementation of
data into the database which we did using dummy data. The purpose of this was to make sure
everything in the database was working without any errors. Without this phase of the database
design process, we wouldn’t be able to create a database. Rather, we would just have the
conceptual design all planned out on paper.

Data Dictionary

A data dictionary is a collection of information describing the data included in a database and the
relationships between the information. It is used as a way to better understand the structure and
information within a database. It includes things like entity names, attributes, and their data
types. As an example, the data dictionary for our project includes things like the Customer table
and its attributes being things like their first name, last name, and the customer type. The data
types, whether or not it is allowed to be null, what table it references if it is a foreign key, and a
sample of the key will be included on the same row as the attribute.

Denormalization

Denormalization is the process of removing of some of the normalized relations of the data in
order to improve performance. When denormalizing the data, it will make it more efficient to run
SQL queries that include a long list of join statements. While we recognize that denormalization
results in data duplication and redundancy, we made the choice to denormalize some of our data.
First, we decided to remove the year table and list the year in the model table instead. We also
decided to list the customer’s state and zip code as attributes in the customer table, rather than
having separate tables for them. We decided to do this with the vendor’s address as well. These
changes make it easier for us and the client to write queries and will allow the queries to run
quicker.

13

Sonner Tire Group Project Team Led Zeppelin

Implemented Physical Design

iy TP n

TEmployee | § Padri TSalesOrderLine
§ Empld trcrl
~ — 4§ Sl Chrd el i ~
T — S S Crd e
EmpLmsiams L S PoducaD
PAmount
H il
Pitaryrmars [yl)
SOy
TSalesOrder d
{1 =D -~
A
TPaymentType
SOCiatomen = 1 Paymenivesil
S L
Decrps
TProduct
SR TPurchasetrder r
Froductiye A
P——— T o s
T " S b
. - PmEID
S e b P kil o d
. - [LSTER]
S e rc s an S - v POLIEHD
—— PCRAmCUn
SCHC b TeeE PO Prod sl T —
S POLC ey TService
IR ETme = PLPrcs | Seevmcucm
Sk Tame = s felmiatectian
S0 et s W Oacou iyes L
TTire
1| Tmfoducsn L Tvendor
Twchicle [1| VedodD L
7 e
o | “Wend i
TCwstoamier WEHC LS]
Trs(ncripsnn et g 2 e
Lt o
T el L] WEHs) W
PR e
e
WEHI MM
N Tirset c
il
€ inarmatd d e e L=
-~ W
A . - o Trmt}2y Commamed L~ 7 MucsD
. TTirehodel MalcaMarr
-y 7 Trsbod=10 T odel
— ™ LY PSEC] 7 mModeD A
o
oo nProdiuca P milrre
Pk o slPikaond 3
e R

Strengths and Weaknesses Encountered During Implementation

One of our strengths was that our ERD was close to finalized before going into the
implementation phase, which made it easier for us to create tables in the database. Creating the
tables in the database was also one of our strengths because we simply had to create the tables in
the order that we wrote our normalized relations. However, one of our weaknesses when creating
the tables in the database was that the attributes of the tables were named inconsistently since we
were working on them separately. The inconsistency of the attribute names made it more
difficult for us to write the SQL queries and implement them into our database. To fix this issue,
we would need to delete the tables and create them again with the appropriately named attributes.
Given the time constraints, we decided to leave the tables the way they are.

14

Specific SQL Statements Requested

Here we will list the specific programs we were asked to execute by the client in the database, as well as additional queries we believe
would be useful for the operation. We have included the request asked of us, the SQL code needed to implement the program, and an
image of the result of the program. Some of the ouputs are empty because none of the sample data applied to the requested query.
When more data is added to the database, it will show more results.

Query | Question SQL Partial Output

#

1 Total sales (in | SELECT MakelD, ModelID, R v
dollars) fora | MOModelName, MOYear, 2 |16 || |05 | e Tt
given tire VendorName, 4002 103 pda 2017 Duer AL Nema
manufacturer | Sum(Quantity*SalePrice) & o (i o0 [t
and car TotalSales s o[vt 247 o
manufacturer. | FROM View1 JOIN View?2 Y aE oS | el e
It would be ON

great if we Viewl.ProductID=View2.ProductID
can specify WHERE month(date)=[Parameter]
the car model
and year too | Viewl

(note that we | SELECT MakelD, ModelID,
would like to | ModelName, Year, VendorName
be able to FROM TMake

input the JOIN TModel

month to be ON MakelD = ModelMakelD
calculated). JOIN TTireModel

0% -

ON MOdE”D = TMMOde“D A Resuts 2 Messages
JOIN TTire G s o
ON TMProductID = TireProductlD z | [wor [veer e

Join TVendor
ON VendorID = TireVendorID

View?2

Sonner Tire Group Project

Team Led Zeppelin

SELECT VehiclelD, SOID, SOLID,

ProductID

FROM TVehicle

JOIN TSalesOrder

ON VehiclelD = SOVehiclelD
JOIN TSalesOrderLine SOL
ON SOID =SOLID

JOIN TProduct

ON SOLProductID = ProductID
WHERE ProductType="Tire'

2 Total sales (in
dollars) by a
customer in a
given year.

SELECT CusFirstName,
CusLastName, Sum(PIAmount)
TotalSales

FROM TCustomer

JOIN TSalesOrder

ON CustomerID = SOCustomerID
JOIN TPaymentin

ON SOID =PISOID

GROUP BY CusFirstName,
CusLastName

B

i Bryan

" Kirk
Lewvy

Quincy Williams

CusFirstName CuslastName TotalSales

86394
83194
60

35398

3 The five
highest
selling tires.

SELECT TOP 5 TireProductID,
ProductName, Count(SOLID)
TimesSold

FROM TSalesOrderLine

JOIN TProduct

ON SOLProductID = ProductID
JOIN TTire

ON TireProductID = ProductID
GROUP BY TireProductID,
ProductName

ORDER BY TimesSold DESC

nodm B Ra —

235/50R19

235/50R13
265/40R21
265/40R21

TimesSold

2

235/50R19 1

[

16

Sonner Tire Group Project

Team Led Zeppelin

itemized
invoices for

SELECT CustomerlD, SOID,
VehiclelD, SOOrderDate,

(with the WHERE clause commented out)

jobs for each SOLQuantity, ProductID, _SOID VehiclelD SOOderDate SOLQuantty ProductiD CusFistame CuslastName SalePrce LineTotal
H 11000 1007 20210417 1 1007 Guincy Williams 14855 14859
CUStomer that CUSFIrStName’ CUSLaStName’ ; T 1010 1003 2020-10-20 4 1001 Jakeem Bryan 13355 535.96
need to SalePrice, (SOLQuantity*SalePrice) | 1o 011001 2002 2 1010 Reese Levy 15 0
Include tII’eS LlneTOtaI 1003 1003 1003 2020-11-18 2 1006 Jakeem Bryan 163.59 32758
R . 1007 1004 1007 2020:07-25 1 1002 Quincy Williams 170.99 170.59
purchased/tire | FROM TCustomer JOIN TVehicle 1009 1005 1003 20210322 007 Medge Kik 148995 14899
rotatlon/tlre on CustomerlD:VEHCustomerlD 1009 1006 1009 202011407 4 1001 Medge Kirk 133.99 535.96
. . .. 1001 1007 1001 2020-06-13 2 1010 Reese Lewy 15 0
repalr/ tire join TSalesOrder on 1007 1008 1007 20200428 2 1011 Quincy Willams 17 34
i i = i Tol] 1009 1009 1009 20200527 1 1004 Medge Kik 14699 14659

protection VehicleID=SOVehiclelD join

TSalesOrderLine on SOID =

SOLSOID join TProduct on

SOLProductID = ProductlD

WHERE CustID=[] AND CarID=[]

AND Date=[]
The number | SELECT EmplD, EmpFirstName,
and type of EmpLastName, _
job performed | Count(SOEmplDSales) Sales, e
by each of Count(SOEmplIDService) Service 2 W02 | Fad el r

. amy Wol

Our FROM TEmpIOyee \]Oln 4 1006 Jessamine Haynes 2 2
employees. TSalesOrder On EmpID = T |18 |Nem rome 2 12

SOEmpIDService

GROUP BY EmpID,

EmpFirstName, EmpLastName
Number of SELECT TireProductID, TireName, el it s
times tire Count(TireProductID)
protection has | NumPurchases

been
purchased for
a particular
tire

FROM TSalesOrderLine JOIN
TProduct On SOLProductID =
ProductID Join TTire On ProductID
= TireProductID Join TService On
ProductID = ServProductID

17

Sonner Tire Group Project Team Led Zeppelin

WHERE ProductType="'Serv' And
ServDescription = 'tire protection’
GROUP BY TireProductID,

TireName
7 The following | SELECT VendorID, VendorName,
items for Count(POID) NumPurchases, | VendorlD | VendorName MumPurchzscs | Total
Purchase Sum(POLQuantity*POLPrice) Total | , Muortoge Aot 1T 2 L
Orders: FROM TPurchaseOrder Join 3 Advartage T/A 1 18299
manufacturer | TPurchaseOrderLine On POID = : Ao : ek
name, POLPOID Join TTire On
number of POLProductID = TireProductID
POs, total Join TVendor On TireVendorID =
cost. VendorID
GROUP BY VendorID,
VendorName
8 Number of SELECT CustomerlID,
orders and CusFirstName, CusLastName, Cusfirsthame Cuslasthame NumSOS
total sales per | Count(SOID) : e
customer in FROM TCustomer Join 3100 Ryee Ml 2
the past 2 TSalesOrder On CustomerID = o a7
years. This SOCustomerID 6 1008 Salvedor __ Shepherd 2
report is WHERE SOOrderDate >= 2 years

particularly GROUP BY CustomerlID,
importantas | CusFirstName, CusLastName
it shows the
number of
returning
customers.

18

Sonner Tire Group Project

Team Led Zeppelin

T TOE o Messages

and then the

SQ2

9 List of tires SELECT ProductID, ProductName PoduclD TreMane
that have not | FROM TSalesOrderLine
been LEFT JOIN TProduct WHERE
purchased SOLProductID IS Null AND
within the last | ProductType = ‘Tire’
6 months (in
order to better
manage
inventory).

10 Names of Payment type — cash, credit, check
customers SELECT CusFirstName, R e | s
who took CusLastName, Total, Paid, (Total - oo [0 | e
advantage of | Paid) Remaining ; L NE
the financing | FROM TCustomer Join o
option, date | TSalesOrder On CustomerID = L A
purchased, SOCustomerID Join SQ1 On — L_‘“fm'"”ﬁwm“ :
total amount | SOCustomerID = SQ1.CustomerID | + [T o e
purchased, JOIN SQ2 ON o ame v [aw
credit limit, SQ1.S0ID=SQ2.S0ID " o[& w
the number of | WHERE IsFinancing = Y’ AND
payments Month(SOOrderDate) =
made, the Month(GETDATE()) — 6
total amount
paid, SQ1
outstanding SELECT CustomerlD, SOID,
amount, is Sum(SOLQuantity*SOLPrice) Total
time to pay- | FROM TVehicle Join TSalesOrder
off less than 6 | On VehiclelD = SOVehiclelD Join
months, all TSalesOrderLine On SOID =
displayed SOLSOID
from the GROUP BY CustomerlID, SOID
latest date

19

Sonner Tire Group Project

Team Led Zeppelin

current date.

Month(SOOrderDate) =
Month(GETDATE()) — 12

largest SELECT CustomerlID,

amount owed. | CusFirstName, CusLastName,
Sum(P1Amount) Paid
FROM TCustomer Join TVehicle
On CustomerID = VEHCustomerID
Join TSalesOrder On SOVehiclelD
= VehiclelD Join TPaymentin On
SOID = PISOID
GROUP BY CustomerlD,
CusFirstName, CusLastName

11 Total profit SELECT ProductID, ProductName,

per tire type | SUM((SOLPrice-

and POLCost)*Quantity) Profit

manufacturer | FROM TSalesOrder join

type in the TSalesOrderLine on

past 6 SOID=SOLSOID join TProduct P

months. on SOLProductlD=ProductID join
TTire on ProductlD=TireProductlD
WHERE Month(SOQOrderDate) =
Month(GETDATE()) - 6
GROUP BY ProductID,
ProductName

12 List of all SELECT CustomerID,

customers CusFirstName, CusLastName e S S

that have not | FROM TCustomer C JOIN

made a TVehicle V on

purchase C.CustomerID=V.VEHCustomerID

within the last | Left Join TSalesOrder on

12 months VehicleID= SOVehiclelD

from the WHERE SOID IS Null AND

20

Sonner Tire Group Project Team Led Zeppelin

13 List of SELECT CusFirstName,
customers CusLastName, i Cnlasome TG
whose AVG(SOLQuantity*SOLPrice) 2 Dabon Pa
average sales | AVGPurchase Tams Tweem T3

is less than FROM TCustomer Join

the average of | TSalesOrder On CustomerID =
all sales. This | SOCustomerID Join

will help us to | TSalesOrderLine On SOID =
find SOLSOID

customers WHERE

whom we AVG(SOLQuantity*SOLPrice) <
should target | (SELECT

to geta AVG(SOLQuantity*SOLPrice)
higher From TSalesOrderLine)
volume of

sales.

21

